17 research outputs found

    Feasibility of protein turnover studies in prototroph Saccharomyces Cerevisiae strains

    Get PDF
    Quantitative proteomics studies of yeast that use metabolic labeling with amino acids rely on auxotrophic mutations of one or more genes on the amino acid biosynthesis pathways. These mutations affect yeast metabolism and preclude the study of some biological processes. Overcoming this limitation, it has recently been described that proteins in a yeast prototrophic strain can also be metabolically labeled with heavy amino acids. However, the temporal profiles of label incorporation under the different phases of the prototroph's growth have not been examined. Labeling trajectories are important in the study of protein turnover and dynamics, in which label incorporation into proteins is monitored across many time points. Here we monitored protein labeling trajectories for 48 h after a pulse with heavy lysine in a yeast prototrophic strain and compared them with those of a lysine auxotrophic yeast. Labeling was successful in prototroph yeast during exponential growth phase but not in stationary phase. Furthermore, we were able to determine the half-lives of more than 1700 proteins during exponential phase of growth with high accuracy and reproducibility. We found a median half-life of 2 h in both strains, which corresponds with the cellular doubling time. Nucleolar and ribosomal proteins showed short half-lives, whereas mitochondrial proteins and other energy production enzymes presented longer half-lives. Except for some proteins involved in lysine biosynthesis, we observed a high correlation in protein half-lives between prototroph and auxotroph strains. Overall, our results demonstrate the feasibility of using prototrophs for proteomic turnover studies and provide a reliable data set of protein half-lives in exponentially growing yeast

    Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling

    Get PDF
    Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-minute time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation due to chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR.Fil: Entwisle, Samuel W.. University of Washington; Estados UnidosFil: Martinez Calejman, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Valente, Anthony S.. University of Washington; Estados UnidosFil: Lawrence, Robert T.. University of Washington; Estados UnidosFil: Hung, Chien Min. University Of Massachussets. Medical School; Estados UnidosFil: Guertin, David A.. University Of Massachussets. Medical School; Estados UnidosFil: Villen, Judit. University of Washington; Estados Unido

    Follistatin-like 3 (FSTL3) mediated silencing of transforming growth factor (TGF ) signaling is essential for testicular aging and regulating testis size

    Get PDF
    Follistatin-like 3 (FSTL3) is a glycoprotein that binds and inhibits the action of TGFβ ligands such as activin. The roles played by FSTL3 and activin signaling in organ development and homeostasis are not fully understood. The authors show mice deficient in FSTL3 develop markedly enlarged testes that are also delayed in their age-related regression. These FSTL3 knockout mice exhibit increased Sertoli cell numbers, allowing for increased spermatogenesis but otherwise showing normal testicular function. The data show that FSTL3 deletion leads to increased AKT signaling and SIRT1 expression in the testis. This demonstrates a cross-talk between TGFβ ligand and AKT signaling and leads to a potential mechanism for increased cellular survival and antiaging. The findings identify crucial roles for FSTL3 in limiting testis organ size and promoting age-related testicular regression

    Chemical Genetic Screen for AMPKα2 Substrates Uncovers a Network of Proteins Involved in Mitosis

    Get PDF
    The energy-sensing AMP-activated protein kinase (AMPK) is activated by low nutrient levels. Functions of AMPK, other than its role in cellular metabolism, are just beginning to emerge. Here we use a chemical genetics screen to identify direct substrates of AMPK in human cells. We find that AMPK phosphorylates 28 previously unidentified substrates, several of which are involved in mitosis and cytokinesis. We identify the residues phosphorylated by AMPK in vivo in several substrates, including protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and p21-activated protein kinase (PAK2). AMPK-induced phosphorylation is necessary for PPP1R12C interaction with 14-3-3 and phosphorylation of myosin regulatory light chain. Both AMPK activity and PPP1R12C phosphorylation are increased in mitotic cells and are important for mitosis completion. These findings suggest that AMPK coordinates nutrient status with mitosis completion, which may be critical for the organism's response to low nutrients during development, or in adult stem and cancer cells.National Institutes of Health (U.S.) (Grant R01-GM068762

    A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry

    No full text
    Most kinases are capable of recognizing and phosphorylating peptides containing short, linear sequence motifs. To measure the activation state of many kinases from the same cell lysate, we created a multiplexed, mass-spectrometry-based in vitro kinase assay. Ninety chemically synthesized peptides derived from well-characterized peptide substrates and in vivo phosphorylation sites with either known or previously unidentified upstream kinases were reacted individually in a plate format with crude cell lysates and ATP. Phosphorylation rates were directly measured based on the addition of 90 same-sequence, site-specific phosphopeptides enriched in stable isotopes to act as ideal quantitative internal standards for analysis by liquid chromatography coupled to tandem mass spectrometry. This approach concurrently measured up to 90 site-specific peptide phosphorylation rates, reporting a diagnostic fingerprint for activated kinase pathways. We applied this unique kinome-activity profiling strategy in a variety of cellular settings, including mitogen stimulation, cell cycle, pharmacological inhibition of pathways, and to a panel of breast cancer cell lines. Finally, we identified the source of activity for a peptide (derived from a PI3K regulatory subunit) from our library. This peptide substrate demonstrated mitotic and tyrosine-specific phosphorylation, which was confirmed to be a novel Src family kinase site in vivo

    S. pombe LSD1 homologs regulate heterochromatin propagation and euchromatic gene transcription

    No full text
    LSD1 represses and activates transcription by demethylating histone H3K4me and H3K9me, respectively. Genetic ablation of the S. pombe homologs, splsd1 and splsd2, resulted in slow growth and lethality, respectively, underscoring their physiological importance. spLsd1 and spLsd2 form a stable protein complex, which exhibits demethylase activity toward methylated H3K9 in vitro. Both proteins were associated with the heterochromatin boundary regions and euchromatic gene promoters. Loss of spLsd1 resulted in increased H3K9 methylation accompanied by reduced euchromatic gene transcription and heterochromatin propagation. Removal of the H3K9 methylase Clr4 partially suppressed the slow growth phenotype of splsd1Delta. Conversely, catalytically inactivating point mutations in the splsd1 and splsd2 genes partially mimicked the growth and heterochromatin propagation phenotypes. Taken together, these findings suggest the importance of both enzymatic and nonenzymatic roles of spLsd1 in regulating heterochromatin propagation and euchromatic transcription and also suggest that misregulation of spLsd1/2 is likely to impact the epigenetic state of the cell
    corecore